Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lisa J. Yule and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(P-O) = 0.004 \text{ Å}$ R factor = 0.054 wR factor = 0.063 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Rubidium zinc phosphate, RbZn₂(PO₄)(HPO₄)

Synthetic RbZn₂(PO₄)(HPO₄) contains anionic layers of vertex-sharing ZnO₄ and (H)PO₄ tetrahedra $[d_{av}(Zn-O) = 1.947 (4) \text{ Å}$ and $d_{av}(P-O) = 1.538 (4) \text{ Å}]$. The seven-coordinate Rb⁺ cations $[d_{av}(Rb-O) = 2.987 (4) \text{ Å}]$ provide interlayer charge compensation. RbZn₂(PO₄)(HPO₄) is isostructural with its potassium and ammonium congeners.

Received 11 January 2001 Accepted 17 January 2001 Online 30 January 2001

Comment

The title compound (Figs. 1 and 2) is isostructural with $KZn_2(PO_4)(HPO_4)$ (Averbuch-Pouchot, 1979) and NH_4Zn_2 -(PO₄)(HPO₄) (Bircsak & Harrison, 1998). The ZnO₄ and (H)PO₄ moieties assemble into corrugated anionic layers normal to [001]. Bicoordinate Zn-O-P and tricoordinate Zn-O-(Zn,P) O atoms occur in these layers (Bircsak & Harrison, 1998). The [Zn₂(PO₄(HPO₄)]⁻ sheets are connected by seven-coordinate inter-layer Rb⁺ species and O7-H1 \cdots O8 hydrogen bonds.

Experimental

The reaction was carried out in a polypropylene bottle: 1.365 g of $\text{Zn}(\text{NO}_3)_2$ was dissolved in 10 ml 1 M H₃PO₄ solution resulting in a clear solution. Then, 4.217 g of 50% RbOH solution was added, resulting in a white gel. The bottle was capped, shaken well, and placed in a 343 K oven for 24 h. The crystalline product was recovered by vacuum filtration and washing with acetone.

Crystal data RbZn₂(PO₄)(HPO₄) Z = 2 $D_x = 3.236 \text{ Mg m}^{-3}$ $M_r = 407.17$ Triclinic, $P\overline{1}$ Mo $K\alpha$ radiation a = 5.2605 (4) ÅCell parameters from 2016 b = 8.9046 (6) Å reflections c = 9.7244(7) Å $\theta = 2.2 - 30.0^{\circ}$ $\alpha = 75.685 \ (1)^{\circ}$ $\mu = 11.92 \text{ mm}^ \beta = 77.487 (2)^{\circ}$ T = 298 K $\gamma = 73.489 (1)^{\circ}$ Rod colourless V = 417.89 (6) Å³ $0.30 \times 0.05 \times 0.04$ mm Data collection

2385 independent reflections

2084 reflections with $I > \sigma(I)$

Weighting: Chebychev polynomial with 3 parameters (Carruthers &

Watkin, 1979) 1.08 0.848 0.686

 $\begin{aligned} R_{\rm int} &= 0.033\\ \theta_{\rm max} &= 30.0^\circ \end{aligned}$

 $h = -5 \rightarrow 7$

 $k = -12 \rightarrow 12$

 $l = -13 \rightarrow 12$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} = 0.0004 \\ \Delta\rho_{\rm max} = 1.18 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

(1967)

 $\Delta \rho_{\rm min} = -1.86 \text{ e } \text{\AA}^{-3}$

Extinction correction: Larson

Extinction coefficient: 8.6 (31)

Bruker SMART1000 CCD areadetector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{\min} = 0.318, T_{\max} = 0.746$ 3620 measured reflections

Refinement

Refinement on F R = 0.054 wR = 0.063 S = 1.072084 reflections 120 parameters Only H-atom U's refined

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

inorganic papers

Figure 1 Fragment of $RbZn_2(PO_4)(HPO_4)$ (50% displacement ellipsoids, symmetry codes as in Table 1).

Table 1

Selected geometric parameters (Å, °).

Rb1-O1	2.936 (4)	Zn2-O5 ^{iv}	1.914 (4)
Rb1-O2 ⁱ	2.956 (4)	$Zn2-O6^{v}$	1.911 (4)
Rb1-O4 ⁱⁱ	2.825 (4)	$Zn2-O8^{iii}$	1.989 (4)
Rb1-O5 ⁱⁱ	3.096 (4)	P1-O2	1.527 (4)
Rb1-O6 ⁱ	2.922 (4)	P1-O3 ^{vi}	1.574 (4)
Rb1-O7 ⁱⁱⁱ	2.902 (4)	P1-O5	1.511 (4)
Rb1-O7	3.275 (4)	P1-O6	1.532 (4)
Zn1-O1	1.933 (4)	P2-O1	1.519 (4)
Zn1-O2	1.896 (4)	P2-O4 ^{vii}	1.522 (4)
Zn1-O3	1.965 (3)	P2-O7	1.583 (4)
Zn1-O4	1.948 (4)	P2-O8	1.536 (4)
Zn2-O3	2.017 (4)		
Zn1-O1-P2	132.1 (3)	Zn1-O4-P2 ⁱⁱⁱ	128.6 (2)
Zn1-O2-P1	148.1 (3)	Zn2 ^{iv} -O5-P1	143.0 (3)
Zn1-O3-Zn2	117.15 (18)	Zn2 ^{viii} -O6-P1	138.1 (3)
Zn1-O3-P1 ^{vi}	126.0 (2)	Zn2 ^{vii} -O8-P2	126.7 (2)
$Zn2-O3-P1^{vi}$	113.76 (19)		

Symmetry codes: (i) 1-x, 1-y, 2-z; (ii) -x, 1-y, 2-z; (iii) x-1, y, z; (iv) -x, 1-y, 1-z; (v) x, y-1, z; (vi) 1-x, 1-y, 1-z; (vii) 1+x, y, z; (viii) x, 1+y, z.

Table 2

Hydrogen-bonding	geometry	(Å	°)
riyurogen-oonung	geometry	(л,	٦.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O7-H1\cdots O8^i$	0.934	1.694	2.605 (6)	164

Symmetry code: (i) 2 - x, -y, 2 - z.

Figure 2

Polyhedral plot of $RbZn_2(PO_4)(HPO_4)$ viewed down [100]. Colour codes: ZnO_4 groups maroon, PO_4 groups light blue, Rb atoms dark blue, H atoms red, O-H bonds white and $H \cdots O$ interactions yellow.

The highest difference peak is 0.86 Å fron Zn2 and the deepest difference hole is 0.82 Å fron Zn1.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SMART*; data reduction: *SMART*; program(s) used to refine structure: *CRYSTALS* (Watkin *et al.*, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997).; software used to prepare material for publication: *CRYSTALS*.

References

Averbuch-Pouchot, M. T. (1979). Acta Cryst. B35, 1452-1454.

Bircsak, Z. & Harrison, W. T. A. (1998). Acta Cryst. C54, 1383-1385.

Bruker (1999). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698-699.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.

Larson, A. C. (1967). Acta Cryst. 23, 664.

Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1997). CRYSTALS User Guide. University of Oxford, England.