Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lisa J. Yule and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{P}-\mathrm{O})=0.004 \AA$
R factor $=0.054$
$w R$ factor $=0.063$
Data-to-parameter ratio $=17.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Rubidium zinc phosphate, $\mathrm{RbZn}_{2}\left(\mathrm{PO}_{4}\right)\left(\mathrm{HPO}_{4}\right)$

Synthetic $\mathrm{RbZn}_{2}\left(\mathrm{PO}_{4}\right)\left(\mathrm{HPO}_{4}\right)$ contains anionic layers of vertex-sharing ZnO_{4} and $(\mathrm{H}) \mathrm{PO}_{4}$ tetrahedra $\left[d_{\mathrm{av}}(\mathrm{Zn}-\mathrm{O})=\right.$ 1.947 (4) \AA and $d_{\mathrm{av}}(\mathrm{P}-\mathrm{O})=1.538$ (4) $\left.\AA\right]$. The seven-coordinate Rb^{+}cations $\left[d_{\mathrm{av}}(\mathrm{Rb}-\mathrm{O})=2.987(4) \AA\right.$] provide interlayer charge compensation. $\mathrm{RbZn}_{2}\left(\mathrm{PO}_{4}\right)\left(\mathrm{HPO}_{4}\right)$ is isostructural with its potassium and ammonium congeners.

Comment

The title compound (Figs. 1 and 2) is isostructural with $\mathrm{KZn}_{2}\left(\mathrm{PO}_{4}\right)\left(\mathrm{HPO}_{4}\right)$ (Averbuch-Pouchot, 1979) and $\mathrm{NH}_{4} \mathrm{Zn}_{2}-$ $\left(\mathrm{PO}_{4}\right)\left(\mathrm{HPO}_{4}\right)$ (Bircsak \& Harrison, 1998). The ZnO_{4} and (H) PO_{4} moieties assemble into corrugated anionic layers normal to [001]. Bicoordinate $\mathrm{Zn}-\mathrm{O}-\mathrm{P}$ and tricoordinate $\mathrm{Zn}-\mathrm{O}-(\mathrm{Zn}, \mathrm{P}) \mathrm{O}$ atoms occur in these layers (Bircsak \& Harrison, 1998). The $\left[\mathrm{Zn}_{2}\left(\mathrm{PO}_{4}\left(\mathrm{HPO}_{4}\right)\right]^{-}\right.$sheets are connected by seven-coordinate inter-layer Rb^{+}species and $\mathrm{O} 7-$ $\mathrm{H} 1 \cdots \mathrm{O} 8$ hydrogen bonds.

Experimental

The reaction was carried out in a polypropylene bottle: 1.365 g of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ was dissolved in $10 \mathrm{ml} 1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ solution resulting in a clear solution. Then, 4.217 g of $50 \% \mathrm{RbOH}$ solution was added, resulting in a white gel. The bottle was capped, shaken well, and placed in a 343 K oven for 24 h . The crystalline product was recovered by vacuum filtration and washing with acetone.

Crystal data

$\mathrm{RbZn}_{2}\left(\mathrm{PO}_{4}\right)\left(\mathrm{HPO}_{4}\right)$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=3.236 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$M_{r}=407.17$
Triclinic, $P \overline{1}$
$a=5.2605$ (4) \AA
$b=8.9046$ (6) \AA
$c=9.7244$ (7) \AA
$\alpha=75.685(1)^{\circ}$
$\beta=77.487$ (2) ${ }^{\circ}$
$\gamma=73.489$ (1) ${ }^{\circ}$
$V=417.89$ (6) \AA^{3}
Mo $K \alpha$ radiation
Cell parameters from 2016
reflections
$\theta=2.2-30.0^{\circ}$
$\mu=11.92 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Rod, colourless
$0.30 \times 0.05 \times 0.04 \mathrm{~mm}$

Data collection

Bruker SMART1000 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.318, T_{\text {max }}=0.746$
3620 measured reflections
2385 independent reflections
2084 reflections with $I>\sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-5 \rightarrow 7$
$k=-12 \rightarrow 12$
$l=-13 \rightarrow 12$

Refinement

Refinement on F
$R=0.054$
$w R=0.063$
$S=1.07$
2084 reflections
120 parameters
Only H-atom U's refined

Received 11 January 2001 Accepted 17 January 2001 Online 30 January 2001

Figure 1
Fragment of $\mathrm{RbZn}_{2}\left(\mathrm{PO}_{4}\right)\left(\mathrm{HPO}_{4}\right) \quad(50 \%$ displacement ellipsoids, symmetry codes as in Table 1).

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

Rb1-O1	2.936 (4)	$\mathrm{Zn} 2-\mathrm{O} 5^{\text {iv }}$	1.914 (4)
$\mathrm{Rb} 1-\mathrm{O} 2^{\text {i }}$	2.956 (4)	$\mathrm{Zn} 2-\mathrm{O}^{\text {v }}$	1.911 (4)
$\mathrm{Rb} 1-\mathrm{O} 4^{\text {ii }}$	2.825 (4)	$\mathrm{Zn} 2-\mathrm{O} 8^{\text {iii }}$	1.989 (4)
$\mathrm{Rb} 1-\mathrm{O} 5{ }^{\text {ii }}$	3.096 (4)	P1-O2	1.527 (4)
$\mathrm{Rb} 1-\mathrm{O}^{\text {i }}$	2.922 (4)	$\mathrm{P} 1-\mathrm{O}^{\text {vi }}$	1.574 (4)
$\mathrm{Rb} 1-\mathrm{O} 7{ }^{\text {iii }}$	2.902 (4)	P1-O5	1.511 (4)
Rb1-O7	3.275 (4)	P1-O6	1.532 (4)
Zn1-O1	1.933 (4)	P2-O1	1.519 (4)
Zn1-O2	1.896 (4)	$\mathrm{P} 2-\mathrm{O} 4{ }^{\text {vii }}$	1.522 (4)
Zn1-O3	1.965 (3)	P2-O7	1.583 (4)
Zn1-O4	1.948 (4)	P2-O8	1.536 (4)
$\mathrm{Zn} 2-\mathrm{O} 3$	2.017 (4)		
$\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{P} 2$	132.1 (3)	$\mathrm{Zn} 1-\mathrm{O} 4-\mathrm{P}{ }^{\text {iii }}$	128.6 (2)
$\mathrm{Zn} 1-\mathrm{O} 2-\mathrm{P} 1$	148.1 (3)	$\mathrm{Zn} 2^{\text {iv }}-\mathrm{O} 5-\mathrm{P} 1$	143.0 (3)
$\mathrm{Zn} 1-\mathrm{O} 3-\mathrm{Zn} 2$	117.15 (18)	$\mathrm{Zn} 2{ }^{\text {viii }}-\mathrm{O} 6-\mathrm{P} 1$	138.1 (3)
$\mathrm{Zn} 1-\mathrm{O} 3-\mathrm{P}^{\text {vi }}$	126.0 (2)	$\mathrm{Zn} 2{ }^{\text {vii }}-\mathrm{O} 8-\mathrm{P} 2$	126.7 (2)
$\mathrm{Zn} 2-\mathrm{O} 3-\mathrm{P}^{\text {vi }}$	113.76 (19)		

Symmetry codes: (i) $1-x, 1-y, 2-z$; (ii) $-x, 1-y, 2-z$; (iii) $x-1, y, z$; (iv) $-x, 1-y, 1-z ;$ (v) $x, y-1, z ;$ (vi) $1-x, 1-y, 1-z ;$ (vii) $1+x, y, z$; (viii) $x, 1+y, z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O7-H1 $\cdots \mathrm{OB}^{\mathrm{i}}$	0.934	1.694	$2.605(6)$	164

[^0]

Figure 2
Polyhedral plot of $\mathrm{RbZn}_{2}\left(\mathrm{PO}_{4}\right)\left(\mathrm{HPO}_{4}\right)$ viewed down [100]. Colour codes: ZnO_{4} groups maroon, PO_{4} groups light blue, Rb atoms dark blue, H atoms red, $\mathrm{O}-\mathrm{H}$ bonds white and $\mathrm{H} \cdots \mathrm{O}$ interactions yellow.

The highest difference peak is $0.86 \AA$ fron Zn 2 and the deepest difference hole is $0.82 \AA$ fron Zn 1 .

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SMART; program(s) used to refine structure: CRYSTALS (Watkin et al., 1997); molecular graphics: ORTEP-3 (Farrugia, 1997).; software used to prepare material for publication: CRYSTALS.

References

Averbuch-Pouchot, M. T. (1979). Acta Cryst. B35, 1452-1454.
Bircsak, Z. \& Harrison, W. T. A. (1998). Acta Cryst. C54, 1383-1385.
Bruker (1999). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
Larson, A. C. (1967). Acta Cryst. 23, 664.
Watkin, D. J., Carruthers, J. R. \& Betteridge, P. W. (1997). CRYSTALS User Guide. University of Oxford, England.

[^0]: Symmetry code: (i) $2-x,-y, 2-z$.

